

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Graal

Christian Wimmer

VM Research Group, Oracle Labs

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement
The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in connection with any Oracle product or service
remains at the sole discretion of Oracle. Any views expressed in this presentation are my
own and do not necessarily reflect the views of Oracle.

3

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Tutorial Outline
• Key distinguishing features of Graal, a high-performance dynamic compiler for Java written in Java
• Introduction to the Graal intermediate representation: structure, instructions, and optimization phases
• Speculative optimizations: first-class support for optimistic optimizations and deoptimization
• Graal API: separation of the compiler from the VM
• Snippets: expressing high-level semantics in low-level Java code
• Compiler intrinsics: use all your hardware instructions with Graal
• Using Graal for static analysis
• Custom compilations with Graal: integration of the compiler with an application or library
• Graal as a compiler for dynamic programming languages in the Truffle framework

4

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

What is Graal?
• A high-performance optimizing JIT compiler for the Java HotSpot VM

– Written in Java and benefitting from Java’s annotation and metaprogramming

• A modular platform to experiment with new compiler optimizations

• A customizable and targetable compiler that you can invoke from Java
– Compile what you want, the way you want

• A platform for speculative optimization of managed languages
– Especially dynamic programming languages benefit from speculation

• A platform for static analysis of Java bytecodes

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Key Features of Graal
• Designed for speculative optimizations and deoptimization

– Metadata for deoptimization is propagated through all optimization phases

• Designed for exact garbage collection
– Read/write barriers, pointer maps for garbage collector

• Aggressive high-level optimizations
– Example: partial escape analysis

• Modular architecture
– Compiler-VM separation

• Written in Java to lower the entry barrier
– Graal compiling and optimizing itself is also a good optimization opportunity

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Getting Started

$ hg clone http://hg.openjdk.java.net/graal/graal
$ cd graal
$./mx.sh build

Get and build the source code:

$./mx.sh vm -version

Run the Graal VM:

$./mx.sh ideinit

Generate Eclipse and NetBeans projects:

Configuration "graal" for JIT compilations with Graal

7

$./mx.sh unittest

Run the whitebox unit tests

mx is our script to simplify building and execution

Configuration "server" for unittest, static analysis,
custom compilations from application

Operating Systems: Windows, Linux, MacOS, Solaris

Architectures: Intel 64-bit, Sparc (experimental)

$./mx.sh –d unittest GraalTutorial#testStringHashCode

Run a specific unit test in the Java debugger

Use the predefined Eclipse launch configuration to
connect to the Graal VM

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Mixed-Mode Execution

8

Bytecode Interpreter Client Compiler Server Compiler Optimized Machine Code Aggressively Optimized Machine Code

Deoptimization

Default configuration of Java HotSpot VM in production:

Graal VM in configuration "graal": Graal replaces the server compiler

Bytecode Interpreter Client Compiler Graal Compiler Optimized Machine Code Aggressively Optimized Machine Code

Deoptimization

Bytecode Interpreter Client Compiler Server Compiler Optimized Machine Code Aggressively Optimized Machine Code

Graal VM in configuration "server": Graal used only for custom compilations

Custom Compiled Machine Code

Graal Compiler

Deoptimization

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Compiler-VM Separation

9

Graal

Java Bytecode Parser

High-Level Optimizations

Low-Level Optimizations

Lowering

Code Generation

Bytecodes
and Metadata

Snippets

Machine Code
and Metadata

IR with High-Level Nodes

IR with Low-Level Nodes

Java HotSpot VM

Snippet Definitions

Class Metadata

Code Cache

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Default Compilation Pipeline
• Java bytecode parser
• Front end: graph based intermediate representation (IR) in static single assignment (SSA) form

– High Tier
• Method inlining
• Partial escape analysis
• Lowering using snippets

– Mid Tier
• Memory optimizations
• Lowering using snippets

– Low Tier
• Back end: register based low-level IR (LIR)

– Register allocation
– Peephole optimizations

• Machine code generation

10

Source code reference: GraalCompiler.compile()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

0

0.5

1

1.5

2

2.5

3
SPECjvm2008

Server
Graal

0

0.5

1

1.5

2

2.5

3

critical max

SPECjbb20013

0

1

2

3

4

5

6
ScalaDaCapo

0

0.5

1

1.5

2
DaCapo 9.12

11

Graal Benchmark Results

Higher is better,
normalized to
Client compiler.

Results are not SPEC
compliant, but follow the
rules for research use.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Oracle Labs (continued)
Adam Welc
Till Westmann
Christian Wimmer
Christian Wirth
Paul Wögerer
Mario Wolczko
Andreas Wöß
Thomas Würthinger

Oracle Labs Interns
Shams Imam
Stephen Kell
Gero Leinemann
Julian Lettner
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Oracle Labs Alumni
Erik Eckstein
Christos Kotselidis

Acknowledgements
Oracle Labs
Danilo Ansaloni
Stefan Anzinger
Daniele Bonetta
Matthias Brantner
Laurent Daynès
Gilles Duboscq
Michael Haupt
Mick Jordan
Peter Kessler
Hyunjin Lee
David Leibs
Kevin Menard
Tom Rodriguez
Roland Schatz
Chris Seaton
Doug Simon
Lukas Stadler
Michael Van De Vanter

JKU Linz
Prof. Hanspeter Mössenböck
Benoit Daloze
Josef Eisl
Matthias Grimmer
Christian Häubl
Josef Haider
Christian Humer
Christian Huber
Manuel Rigger
Bernhard Urban

University of Edinburgh
Christophe Dubach
Juan José Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University of California, Irvine
Prof. Michael Franz
Codrut Stancu
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj
Lei Zhao

T. U. Dortmund
Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang
Nicholas Ulle

12

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Graph-Based Intermediate Representation

13

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Basic Properties
• Two interposed directed graphs

– Control flow graph: Control flow edges point “downwards” in graph
– Data flow graph: Data flow edges point “upwards” in graph

• Floating nodes
– Nodes that can be scheduled freely are not part of the control flow graph
– Avoids unnecessary restrictions of compiler optimizations

• Graph edges specified as annotated Java fields in node classes
– Control flow edges: @Successor fields
– Data flow edges: @Input fields
– Reverse edges (i.e., predecessors, usages) automatically maintained by Graal

• Always in Static Single Assignment (SSA) form
• Only explicit and structured loops

– Loop begin, end, and exit nodes

• Graph visualization tool: “Ideal Graph Visualizer”, start using “./mx.sh igv”

14

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IR Example: Defining Nodes

15

public abstract class BinaryNode ... {
 @Input protected ValueNode x;
 @Input protected ValueNode y;
}

public class IfNode ... {
 @Successor BeginNode trueSuccessor;
 @Successor BeginNode falseSuccessor;
 @Input(InputType.Condition) LogicNode condition;
 protected double trueSuccessorProbability;
}

@Input fields: data flow

@Successor fields: control flow

Fields without annotation: normal data properties

public abstract class Node ... {
 public NodeClassIterable inputs() { ... }
 public NodeClassIterable successors() { ... }

 public NodeIterable<Node> usages() { ... }
 public Node predecessor() { ... }
}

Base class allows iteration of all inputs / successors

Base class maintains reverse edges: usages / predecessor

Design invariant: a node has at most one predecessor

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IR Example: Ideal Graph Visualizer

16

$./mx.sh igv &
$./mx.sh unittest -G:Dump= -G:MethodFilter=String.hashCode GraalTutorial#testStringHashCode

Start the Graal VM with graph dumping enabled

Test that just compiles String.hashCode()

Graph optimization phases

Filters to make graph
more readable

Properties for the
selected node

Colored and filtered graph: control flow in red,
data flow in blue

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IR Example: Control Flow

17

Fixed node form the control flow graph

Fixed nodes: all nodes that have side effects and need to
be ordered, e.g., for Java exception semantics

Optimization phases can convert fixed to floating nodes

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IR Example: Floating Nodes

18

Floating nodes have no control flow dependency

Can be scheduled anywhere as long as data dependencies
are fulfilled

Constants, arithmetic functions, phi functions, … are
floating nodes

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IR Example: Loops

19

All loops are explicit and structured

LoopBegin, LoopEnd, LoopExit nodes

Simplifies optimization phases

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

FrameState
• Speculative optimizations require deoptimization

– Restore Java interpreter state at safepoints
– Graal tracks the interpreter state throughout the whole compilation

• FrameState nodes capture the state of Java local variables and Java expression stack
• And: method + bytecode index

• Method inlining produces nested frame states
– FrameState of callee has @Input outerFrameState
– Points to FrameState of caller

20

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IR Example: Frame States

21

State at the beginning of the loop:
Local 0: “this”
Local 1: “h”
Local 2: “val”
Local 3: “i”

public int hashCode() {
 int h = hash;
 if (h == 0 && value.length > 0) {
 char val[] = value;
 for (int i = 0; i < value.length; i++) {
 h = 31 * h + val[i];
 }
 hash = h;
 }
 return h;
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Important Optimizations
• Constant folding, arithmetic optimizations, strength reduction, ...

– CanonicalizerPhase
– Nodes implement the interface Canonicalizeable
– Executed often in the compilation pipeline
– Incremental canonicalizer only looks at new / changed nodes to save time

• Global Value Numbering
– Automatically done based on node equality

22

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 23

A Simple Optimization Phase
public class LockEliminationPhase extends Phase {

 @Override
 protected void run(StructuredGraph graph) {
 for (MonitorExitNode node : graph.getNodes(MonitorExitNode.class)) {
 FixedNode next = node.next();
 if (next instanceof MonitorEnterNode) {
 MonitorEnterNode monitorEnterNode = (MonitorEnterNode) next;
 if (monitorEnterNode.object() == node.object()) {
 GraphUtil.removeFixedWithUnusedInputs(monitorEnterNode);
 GraphUtil.removeFixedWithUnusedInputs(node);
 }
 }
 }
 }
}

Eliminate unnecessary release-reacquire of a monitor
when no instructions are between

Iterate all nodes of a certain class

Modify the graph

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Type System (Stamps)
• Every node has a Stamp that describes the possible values of the node

– The kind of the value (object, integer, float)
– But with additional details if available
– Stamps form a lattice with meet (= union) and join (= intersection) operations

• ObjectStamp
– Declared type: the node produces a value of this type, or any subclass
– Exact type: the node produces a value of this type (exactly, not a subclass)
– Value is never null (or always null)

• IntegerStamp
– Number of bits used
– Minimum and maximum value
– Bits that are always set, bits that are never set

• FloatStamp

24

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Speculative Optimizations

25

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Motivating Example for Speculative Optimizations
• Inlining of virtual methods

– Most methods in Java are dynamically bound
– Class Hierarchy Analysis
– Inline when only one suitable method exists

• Compilation of foo() when only A loaded
– Method getX() is inlined
– Same machine code as direct field access
– No dynamic type check

• Later loading of class B
– Discard machine code of foo()
– Recompile later without inlining

• Deoptimization
– Switch to interpreter in the middle of foo()
– Reconstruct interpreter stack frames
– Expensive, but rare situation
– Most classes already loaded at first compile

void foo() {
 A a = create();
 a.getX();
}

class A {
 int x;

 int getX() {
 return x;
 }
}

class B extends A {
 int getX() {
 return ...
 }
}

26

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

enter
call create
move [eax + 8] -> esi
leave
return

Deoptimization
main()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Dynamic Link, Return Address

Spill Slots
foo()
Compiled Frame

create()
Interpreter Frame

Stack grows
downwards

Machine code for foo():

27

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Deoptimization
main()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Dynamic Link, Return Address

Spill Slots
foo()
Compiled Frame

create()
Interpreter Frame

Stack grows
downwards

Machine code for foo():

jump Interpreter
call create
call Deoptimization
leave
return

28

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Deoptimization
main()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Dynamic Link, Return Address

Spill Slots
foo()
Compiled Frame

Stack grows
downwards

Machine code for foo():

jump Interpreter
call create
call Deoptimization
leave
return

29

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

foo()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Deoptimization
main()
Interpreter Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Stack grows
downwards

Machine code for foo():

jump Interpreter
call create
call Deoptimization
leave
return

30

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Example: Speculative Optimization

31

int f1;
int f2;

void speculativeOptimization(boolean flag) {
 f1 = 41;
 if (flag) {
 f2 = 42;
 return;
 }
 f2 = 43;
}

Java source code:

./mx.sh igv &

./mx.sh unittest -G:Dump= -G:MethodFilter=GraalTutorial.speculativeOptimization GraalTutorial#testSpeculativeOptimization

Command line to run example:

Assumption: method speculativeOptimization is always
called with parameter flag set to false

The test case dumps two graphs: first with speculation,
then without speculation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

After Parsing without Speculation

32

Without speculative optimizations: graph covers the whole
method

int f1;
int f2;

void speculativeOptimization(boolean flag) {
 f1 = 41;
 if (flag) {
 f2 = 42;
 return;
 }
 f2 = 43;
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

After Parsing with Speculation

33

Speculation Assumption: method test is always called
with parameter flag set to false

No need to compile the code inside the if block

Bytecode parser creates the if block, but stops parsing
and fills it with DeoptimizeNode

Speculation is guided by profiling information collected by
the VM before compilation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

After Converting Deoptimize to Fixed Guard

34

ConvertDeoptimizeToGuardPhase replaces the if-
deoptimize with a single FixedGuardNode

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Frame states after Parsing

35

State changing nodes have a FrameState

Guard does not have a FrameState

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

After Lowering: Guard is Floating

36

First lowering replaces the FixedGuardNode with a floating
GuardNode

ValueAnchorNode ensures the floating guard is executed
before the second write

Guard can be scheduled within these constraints

Dependency of floating guard on StartNode ensures guard
is executed after the method start

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

After Replacing Guard with If-Deoptimize

37

GuardLoweringPhase replaces GuardNode with if-
deoptimize

The if is inserted at the best (earliest) position – it is before
the write to field f1

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Frame States are Still Unchanged

38

State changing nodes have a FrameState

Deoptimize does not have a FrameState

Up to this optimization stage, nothing has changed
regarding FrameState nodes

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

After FrameStateAssignmentPhase

39

State changing nodes do not have a FrameState

Deoptimize does have a FrameState

FrameStateAssignmentPhase assigns every
DeoptimizeNode the FrameState of the preceding state
changing node

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Final Graph After Optimizations

40

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Frame States: Two Stages of Compilation
First Stage: Guard Optimizations Second Stage: Side-effects Optimizations

FrameState is on nodes with side effects ... nodes that deoptimize

Nodes with side effects cannot be moved within the graph ... can be moved

Nodes that deoptimize can be moved within the graph ... cannot be moved

New guards can be introduced anywhere
at any time. Redundant guards can be
eliminated. Most optimizations are
performed in this stage.

Nodes with side effects can be reordered
or combined.

StructuredGraph.guardsStage = GuardsStage.FLOATING_GUARDS GuardsStage.AFTER_FSA

Graph is in this stage before GuardLoweringPhase ... after FrameStateAssignmentPhase

41

Implementation note: Between GuardLoweringPhase and FrameStateAssignmentPhase, the graph is in stage
GuardsStage.FIXED_DEOPTS. This stage has no benefit for optimization, because it has the restrictions of both major stages.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Optimizations on Floating Guards
• Redundant guards are eliminated

– Automatically done by global value numbering
– Example: multiple bounds checks on the same array

• Guards are moved out of loops
– Automatically done by scheduling
– GuardLoweringPhase assigns every guard a dependency on the reverse postdominator of the original

fixed location
• The block whose execution guarantees that the original fixed location will be reached too

– For guards in loops (but not within a if inside the loop), this is a block before the loop

• Speculative optimizations can move guards further up
– This needs a feedback cycle with the interpreter: if the guard actually triggers deoptimization,

subsequent recompilation must not move the guard again

42

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Graal API

43

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Graal API Interfaces
• Interfaces for everything coming from a .class file

– JavaType, JavaMethod, JavaField, ConstantPool, Signature, …

• Provider interfaces
– MetaAccessProvider, CodeCacheProvider, ConstantReflectionProvider, …

• VM implements the interfaces, Graal uses the interfaces

• CompilationResult is produced by Graal
– Machine code in byte[] array
– Pointer map information for garbage collection
– Information about local variables for deoptimization
– Information about speculations performed during compilation

44

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Dynamic Class Loading
• From the Java specification: Classes are loaded and initialized as late as possible

– Code that is never executed can reference a non-existing class, method, or field
– Invoking a method does not make the whole method executed
– Result: Even a frequently executed (= compiled) method can have parts that reference non-existing elements
– The compiler must not trigger class loading or initialization, and must not throw linker errors

• Graal API distinguishes between unresolved and resolved elements
– Interfaces for unresolved elements: JavaType, JavaMethod, JavaField

• Only basic information: name, field kind, method signature
– Interfaces for resolved elements: ResolvedJavaType, ResolvedJavaMethod, ResolvedJavaField

• All the information that Java reflection gives you, and more

• Graal as a JIT compiler does not trigger class loading
– Replace accesses to unresolved elements with deoptimization, let interpreter then do the loading and linking

• Graal as a static analysis framework can trigger class loading

45

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 46

Important Provider Interfaces
public interface MetaAccessProvider {
 ResolvedJavaType lookupJavaType(Class<?> clazz);
 ResolvedJavaMethod lookupJavaMethod(Executable reflectionMethod);
 ResolvedJavaField lookupJavaField(Field reflectionField);
 ...
}

Convert Java reflection objects to Graal API

public interface ConstantReflectionProvider {
 Boolean constantEquals(Constant x, Constant y);
 Integer readArrayLength(JavaConstant array);
 ...
}

Look into constants – note that the VM can deny the
request, maybe it does not even have the information

It breaks the compiler-VM separation to get the raw object
encapsulated in a Constant – so there is no method for it

public interface CodeCacheProvider {
 InstalledCode addMethod(ResolvedJavaMethod method, CompilationResult compResult,
 SpeculationLog speculationLog, InstalledCode predefinedInstalledCode);
 InstalledCode setDefaultMethod(ResolvedJavaMethod method, CompilationResult compResult);
 TargetDescription getTarget();
 ...
}

Install compiled code into the VM

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 47

Example: Print Bytecodes of a Method
/* Entry point object to the Graal API from the hosting VM. */
RuntimeProvider runtimeProvider = Graal.getRequiredCapability(RuntimeProvider.class);

/* The default backend (architecture, VM configuration) that the hosting VM is running on. */
Backend backend = runtimeProvider.getHostBackend();

/* Access to all of the Graal API providers, as implemented by the hosting VM. */
Providers providers = backend.getProviders();

/* The provider that allows converting reflection objects to Graal API. */
MetaAccessProvider metaAccess = providers.getMetaAccess();

Method reflectionMethod = ...
ResolvedJavaMethod method = metaAccess.lookupJavaMethod(reflectionMethod);

/* ResolvedJavaMethod provides all information that you want about a method, for example, the bytecodes. */
byte[] bytecodes = method.getCode();

/* BytecodeDisassembler shows you how to iterate bytecodes, how to access type information, and more. */
System.out.println(new BytecodeDisassembler().disassemble(method));

./mx.sh unittest GraalTutorial#testPrintBytecodes

Command line to run example:

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Snippets

48

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The Lowering Problem
• How do you express the low-level semantics of a high-level operation?
• Manually building low-level IR graphs

– Tedious and error prone
• Manually generating machine code

– Tedious and error prone
– Probably too low level (no more compiler optimizations possible after lowering)

• Solution: Snippets
– Express the semantics of high-level Java operations in low-level Java code

• Word type representing a machine word allows raw memory access
– Simplistic view: replace a high-level node with an inlined method
– To make it work in practice, a few more things are necessary

49

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 50

Snippet Lifecycle

Bytecodes Prepared
IR Graph Specialized

IR Graphs

Preparation Specialization Instantiation

Once Few Times Many Times

...
aload_0
getfield
ifne 10
aload_1
arraylength
...

Frequency:

Java Bytecode Parsing

Node Intrinsification
Exhaustive Method Inlining

Constant Folding, Canonicalization

Graph Duplication

Node Intrinsification
Constant Folding, Canonicalization

Constant Parameter Replacement
Graph Duplication
Graph Inlining in Target Method
Constant Folding, Canonicalization

Steps:

Target Method
with High-level

Node

Specialized
 IR Graph
of Snippet

Target Method
with Low-level

Nodes

+ =

...

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 51

Snippet Example: instanceOf with Profiling Information
@Snippet
static Object instanceofWithProfile(Object object,
 @ConstantParameter boolean nullSeen,
 @VarargsParameter Word[] profiledHubs,
 @VarargsParameter boolean[] hubIsPositive) {

 if (probability(NotFrequent, object == null)) {
 if (!nullSeen) {
 deoptimize(OptimizedTypeCheckViolated);
 throw shouldNotReachHere();
 }
 isNullCounter.increment();
 return false;
 }
 Anchor afterNullCheck = anchor();
 Word objectHub = loadHub(object, afterNullCheck);

 explodeLoop();
 for (int i = 0; i < profiledHubs.length; i++) {
 if (profiledHubs[i].equal(objectHub)) {
 profileHitCounter.increment();
 return hubIsPositive[i];
 }
 }
 deoptimize(OptimizedTypeCheckViolated);
 throw shouldNotReachHere();
}

Specialization for one type and never null: Constant folding during specialization

Loop unrolling during specialization

Loop unrolling during specialization

Node intrinsic Node intrinsic Node intrinsic

Debug / profiling code eliminated by constant folding and
dead code elimination

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 52

Snippet Example: Specialization for One Type
@Snippet
static Object instanceofWithProfile(Object object,
 @ConstantParameter boolean nullSeen,
 @VarargsParameter Word[] profiledHubs,
 @VarargsParameter boolean[] hubIsPositive) {

 if (probability(NotFrequent, object == null)) {
 if (!nullSeen) {
 deoptimize(OptimizedTypeCheckViolated);
 throw shouldNotReachHere();
 }
 isNullCounter.increment();
 return false;
 }
 Anchor afterNullCheck = anchor();
 Word objectHub = loadHub(object, afterNullCheck);

 explodeLoop();
 for (int i = 0; i < profiledHubs.length; i++) {
 if (profiledHubs[i].equal(objectHub)) {
 profileHitCounter.increment();
 return hubIsPositive[i];
 }
 }
 deoptimize(OptimizedTypeCheckViolated);
 throw shouldNotReachHere();
}

falsetrue

guard

falsetrue
If

Begin Begin

Deoptimize

Return

IsNull

LoadHub

P:object

P:profiledHubs-0

P:hubIsPositive-0

Start

If

==

Begin Begin

Deoptimize

IR Node

Control-flow Edge

Data-flow Edge

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 53

Node Intrinsics
class LoadHubNode extends FloatingGuardedNode {

 @Input ValueNode object;

 LoadHubNode(ValueNode object, ValueNode guard) {
 super(guard);
 this.object = object;
 }
}

@NodeIntrinsic(LoadHubNode.class)
static native Word loadHub(Object object, Object guard);

class DeoptimizeNode extends ControlSinkNode {

 final Reason reason;

 DeoptimizeNode(Reason reason) {
 this.object = object;
 }
}

@NodeIntrinsic(DeoptimizeNode.class)
static native void deoptimize(
 @ConstantNodeParameter Reason reason);

Calling the node intrinsic reflectively instantiates the node
using the matching constructor

Constructor with non-Node parameter requires node
intrinsic parameter to be a constant during snippet
specialization

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 54

Snippet Instantiation
SnippetInfo instanceofWithProfile = snippet(InstanceOfSnippets.class, "instanceofWithProfile");

void lower(InstanceOfNode node) {
 ValueNode object = node.getObject();
 JavaTypeProfile profile = node.getProfile();

 if (profile.totalProbability() > threshold) {
 int numTypes = profile.getNumTypes();
 Word[] profiledHubs = new Word[numTypes];
 boolean hubIsPositive = new boolean[numTypes];
 for (int i = 0; i < numTypes; i++) {
 profiledHubs[i] = profile.getType(i).getHub();
 hubIsPositive[i] = profile.isPositive(i);
 }

 Args args = new Args(instanceofWithProfile);
 args.add(object);
 args.addConst(profile.getNullSeen());
 args.addVarargs(profiledHubs);
 args.addVarargs(hubIsPositive);

 SnippetTemplate s = template(args);
 s.instantiate(args, node);

 } else {
 // Use a different snippet.
 }
}

Node argument: formal parameter of snippet is replaced
with this node

Constant argument for snippet specialization

Snippet preparation and specialization

Snippet instantiation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Example in IGV
• The previous slides are slightly simplified

– In reality the snippet graph is a bit more complex
– But the end result is the same

55

static class A { }
static class B extends A { }

static int instanceOfUsage(Object obj) {
 if (obj instanceof A) {
 return 42;
 } else {
 return 0;
 }
}

Java source code:

./mx.sh igv &

./mx.sh unittest -G:Dump= -G:MethodFilter=GraalTutorial.instanceOfUsage GraalTutorial#testInstanceOfUsage

Command line to run example:

Assumption: method instanceOfUsage is always called
with parameter obj having class A

The snippets for lowering of instanceOf are in class
InstanceOfSnippets

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Method Before Lowering

56

InstanceOfNode has profiling information: only type A seen
in interpreter

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Snippet After Parsing

57

IGV shows a nested graph for snippet preparation and
specialization

Snippet graph after bytecode parsing is big, because no
optimizations have been performed yet

Node intrinsics are still method calls

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Snippet After Preparation

58

Calls to node intrinsics are replaced with actual nodes

Constant folding and dead code elimination removed
debugging code and counters

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Snippet After Specialization

59

Constant snippet parameter is constant folded

Loop is unrolled for length 1

This much smaller graph is cached for future instantiations
of the snippet

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Method After Lowering

60

InstanceOfNode has been replaced with snippet graph

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Compiler Intrinsics

61

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Compiler Intrinsics
• Called “method substitution” in Graal

– A lot mechanism and infrastructure shared with snippets

• Use cases
– Use a special hardware instruction instead of calling a Java method
– Replace a runtime call into the VM with low-level Java code

• Implementation steps
– Define a node for the intrinsic functionality
– Define a method substitution for the Java method that should be intrinsified

• Use a node intrinsic to create your node
– Define a LIR instruction for your functionality
– Generate this LIR instruction in the LIRLowerable.generate() method of your node
– Generate machine code in your LIRInstruction.emitCode() method

62

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Example: Intrinsification of Math.sin()

63

static double intrinsicUsage(double val) {
 return Math.sin(val);
}

Java source code:

./mx.sh igv &

./mx.sh c1visualizer &

./mx.sh unittest -G:Dump= -G:MethodFilter=GraalTutorial.intrinsicUsage GraalTutorial#testIntrinsicUsage

Command line to run example:

Java implementation of Math.sin() calls native code via JNI

C1Visualizer shows the LIR and generated machine code

x86 provides an FPU instruction: fsin

Load the generated .cfg file with C1Visualzier

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

After Parsing

64

Regular method call to Math.sin()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

@ClassSubstitution(value = java.lang.Math.class)
public class MathSubstitutionsX86 {

 @MethodSubstitution(guard = UnsafeSubstitutions.GetAndSetGuard.class)
 public static double sin(double x) {
 if (abs(x) < PI_4) {
 return MathIntrinsicNode.compute(x, Operation.SIN);
 } else {
 return callDouble(ARITHMETIC_SIN, x);
 }
 }

 public static final ForeignCallDescriptor ARITHMETIC_SIN = new ForeignCallDescriptor("arithmeticSin", double.class, double.class);
}

65

Method Substitution
public class MathIntrinsicNode extends FloatingNode implements ArithmeticLIRLowerable {
 public enum Operation {LOG, LOG10, SIN, COS, TAN }

 @Input protected ValueNode value;
 protected final Operation operation;

 public MathIntrinsicNode(ValueNode value, Operation op) { ... }
 @NodeIntrinsic
 public static native double compute(double value, @ConstantNodeParameter Operation op);

 public void generate(NodeMappableLIRBuilder builder, ArithmeticLIRGenerator gen) { ... }
}

Class that is substituted

Node with node intrinsic shared several Math methods

The x86 instruction fsin can only be used for a small input
values

Runtime call into the VM used for all other values

LIR Generation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

After Inlining the Substituted Method

66

MathIntrinsicNode, AbsNode, and ForeignCallNode are all
created by node intrinsics

Graph remains unchanged throughout all further
optimization phases

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 67

LIR Instruction
public class AMD64MathIntrinsicOp extends AMD64LIRInstruction {
 public enum IntrinsicOpcode { SIN, COS, TAN, LOG, LOG10 }

 @Opcode private final IntrinsicOpcode opcode;
 @Def protected Value result;
 @Use protected Value input;

 public AMD64MathIntrinsicOp(IntrinsicOpcode opcode, Value result, Value input) {
 this.opcode = opcode;
 this.result = result;
 this.input = input;
 }

 @Override
 public void emitCode(CompilationResultBuilder crb, AMD64MacroAssembler masm) {
 switch (opcode) {
 case LOG: masm.flog(asDoubleReg(result), asDoubleReg(input), false); break;
 case LOG10: masm.flog(asDoubleReg(result), asDoubleReg(input), true); break;
 case SIN: masm.fsin(asDoubleReg(result), asDoubleReg(input)); break;
 case COS: masm.fcos(asDoubleReg(result), asDoubleReg(input)); break;
 case TAN: masm.ftan(asDoubleReg(result), asDoubleReg(input)); break;
 default: throw GraalInternalError.shouldNotReachHere();
 }
 }
}

LIR uses annotation to specify input, output, or temporary
registers for an instruction

Finally the call to the assembler to emit the bits

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

LIR Before Register Allocation

68

The SIN instruction we are looking for

Runtime call into the VM (without JNI overhead)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Static Analysis using Graal

69

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Graal as a Static Analysis Framework
• Graal and the hosting Java VM provide

– Class loading (parse the class file)
– Access the bytecodes of a method
– Access to the Java type hierarchy, type checks
– Build a high-level IR graph in SSA form
– Linking / method resolution of method calls

• Static analysis and compilation use same intermediate representation
– Simplifies applying the static analysis results for optimizations

70

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Example: A Simple Static Analysis
• Implemented just for this tutorial, not complete enough for production use
• Goals

– Identify all methods reachable from a root method
– Identify the types assigned to each field
– Identify all instantiated types

• Fixed point iteration of type flows
– Types are propagated from sources (allocations) to usages

• Context insensitive
– One set of types for each field
– One set of types for each method parameter / method return

71

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

bar

Example Type Flow Graph
Object f;

void foo() {
 allocate();
 bar();
}

Object allocate() {
 f = new Point()
}

int bar() {
 return f.hashCode();
}

putField f

new Point

getField f

obj vcall hashCode

this

allocate

Point.hashCode

[Point]

[Point]

[Point]

f

[Point]

[Point]

Analysis is context insensitive:
One type state per field

72

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

bar

Example Type Flow Graph
Object f;

void foo() {
 allocate();
 bar();
}

Object allocate() {
 f = new Point()
}

int bar() {
 return f.hashCode();
}

putField f

new Point

getField f

obj vcall hashCode

this

allocate

Point.hashCode

[Point]

[Point]

[Point, String]

f

[String]

[Point, String]

[Point, String]

this

String.hashCode

Analysis is context insensitive:
One type state per field

f = "abc";

73

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 74

Building the Graal Graph
StructuredGraph graph = new StructuredGraph(method);

try (Scope scope = Debug.scope("graph building", graph)) {

 GraphBuilderConfiguration config= GraphBuilderConfiguration.getEagerDefault();

 config = config.withOmitAllExceptionEdges(true);

 OptimisticOptimizations optOpts = OptimisticOptimizations.NONE;

 GraphBuilderPhase.Instance graphBuilder = new GraphBuilderPhase.Instance(metaAccess, config, optOpts);
 graphBuilder.apply(graph);

} catch (Throwable ex) {
 Debug.handle(ex);
}

TypeFlowBuilder typeFlowBuilder = new TypeFlowBuilder(graph);
typeFlowBuilder.apply();

Support for graph dumping to IGV

For simplicity we ignore exception handlers

We want all types to be resolved, i.e., classes loaded

Disable speculation and optimistic optimizations

Parse bytecodes

Convert Graal graph to our type flow graph

Code from MethodState.process()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 75

Building the Type Flow Graph
class TypeFlowBuilder extends StatelessPostOrderNodeIterator {

 private final NodeMap<TypeFlow> typeFlows;

 public void apply() {
 for (Node n : graph.getNodes()) {
 if (n instanceof ParameterNode) {
 ParameterNode node = (ParameterNode) n;
 registerFlow(node, methodState.formalParameters[(node.index())]);
 }
 }
 super.apply();
 }

 protected void node(FixedNode n) {
 if (n instanceof NewInstanceNode) {
 NewInstanceNode node = (NewInstanceNode) n;
 TypeFlow flow = new TypeFlow();
 flow.addTypes(Collections.singleton(type));
 registerFlow(node, flow);
 flow.addUse(results.getAllInstantiatedTypes());

 } else if (n instanceof LoadFieldNode) {
 LoadFieldNode node = (LoadFieldNode) n;
 registerFlow(node, results.lookupField(node.field()));

Graal class to store additional temporary data for nodes

Iterate all graph nodes, not ordered

Register the flow for a node in the typeFlows map

Called for all fixed graph nodes in reverse postorder

Type flow for an allocation: just the allocated type

Graal class for iterating fixed nodes in reverse postorder

Type flow for a field load: the types assigned to the field

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 76

Linking Method Invocations
if (callTarget.invokeKind().isDirect()) {
 /* Static and special calls: link the statically known callee method. */
 linkCallee(callTarget.targetMethod());

} else {
 /* Virtual and interface call: Iterate all receiver types. */
 for (ResolvedJavaType type : getTypes()) {
 /*
 * Resolve the method call for one exact receiver type. The method linking
 * semantics of Java are complicated, but fortunatley we can use the linker of
 * the hosting Java VM. The Graal API exposes this functionality.
 */
 ResolvedJavaMethod method = type.resolveConcreteMethod(callTarget.targetMethod(),
 callTarget.invoke().getContextType());
 linkCallee(method);
 }
}

Code from InvokeTypeFlow.process()

New receiver types found by the static analysis are added
to this set – this method is then executed again

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Substrate VM

77

Static Analysis and Ahead-of-Time Compilation using Graal

Ahead-of-Time
Compilation

Static Analysis

Substrate VM

Java Application

JDK

Reachable methods,
fields, and classes

Machine Code

Initial Heap

All Java classes from
application, JDK,
and Substrate VM

Application running
without dependency on JDK
and without Java class loading

DWARF Info

ELF / MachO Binary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Custom Compilations with Graal

78

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Custom Compilations with Graal
• Applications can call Graal like a library to perform custom compilations

– With application-specific optimization phases
– With application-specific compiler intrinsics
– Reusing all standard Graal optimization phases
– Reusing lowerings provided by the hosting VM

• Example use cases
– Perform partial evaluation

• Staged execution
• Specialize for a fixed number of loop iterations

– Custom method inlining
– Use special hardware instructions

79

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 80

Example: Custom Compilation
public class InvokeGraal {
 protected final Backend backend;
 protected final Providers providers;
 protected final MetaAccessProvider metaAccess;
 protected final CodeCacheProvider codeCache;
 protected final TargetDescription target;

 public InvokeGraal() {
 /* Ask the hosting Java VM for the entry point object to the Graal API. */
 RuntimeProvider runtimeProvider = Graal.getRequiredCapability(RuntimeProvider.class);
 /* The default backend (architecture, VM configuration) that the hosting VM is running on. */
 backend = runtimeProvider.getHostBackend();
 /* Access to all of the Graal API providers, as implemented by the hosting VM. */
 providers = backend.getProviders();
 /* Some frequently used providers and configuration objects. */
 metaAccess = providers.getMetaAccess();
 codeCache = providers.getCodeCache();
 target = codeCache.getTarget();
 }

 protected InstalledCode compileAndInstallMethod(ResolvedJavaMethod method) ...

$./mx.sh igv &
$./mx.sh unittest -G:Dump= -G:MethodFilter=String.hashCode GraalTutorial#testStringHashCode

Custom compilation of String.hashCode()

See next slide

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 81

Example: Custom Compilation
ResolvedJavaMethod method = ...
StructuredGraph graph = new StructuredGraph(method);
/* The phases used to build the graph. Usually this is just the GraphBuilderPhase. If
 * the graph already contains nodes, it is ignored. */
PhaseSuite<HighTierContext> graphBuilderSuite = backend.getSuites().getDefaultGraphBuilderSuite();
/* The optimization phases that are applied to the graph. This is the main configuration
 * point for Graal. Add or remove phases to customize your compilation. */
Suites suites = backend.getSuites().createSuites();
/* The calling convention for the machine code. You should have a very good reason
 * before you switch to a different calling convention than the one that the VM provides by default. */
CallingConvention callingConvention = CodeUtil.getCallingConvention(codeCache, Type.JavaCallee, method, false);
/* We want Graal to perform all speculative optimisitic optimizations, using the
 * profiling information that comes with the method (collected by the interpreter) for speculation. */
OptimisticOptimizations optimisticOpts = OptimisticOptimizations.ALL;
ProfilingInfo profilingInfo = method.getProfilingInfo();
/* The default class and configuration for compilation results. */
CompilationResult compilationResult = new CompilationResult();
CompilationResultBuilderFactory factory = CompilationResultBuilderFactory.Default;

/* Invoke the whole Graal compilation pipeline. */
GraalCompiler.compileGraph(graph, callingConvention, method, providers, backend, target, null, graphBuilderSuite,
 optimisticOpts, profilingInfo, null, suites, compilationResult, factory);
/* Install the compilation result into the VM, i.e., copy the byte[] array that contains
 * the machine code into an actual executable memory location. */
InstalledCode installedCode = codeCache.addMethod(method, compilationResult, null, null);

/* Invoke the installed code with your arguments. */
installedCode.executeVarargs([...]);

Add your custom optimization phases to the suites

You can manually construct Graal IR and compile it

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Truffle
A Language Implementation Framework that uses Graal for Custom Compilation

82

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

“Write Your Own Language”

83

Prototype a new language

Parser and language work to build syntax tree (AST),
AST Interpreter

Write a “real” VM

In C/C++, still using AST interpreter, spend a lot of time
implementing runtime system, GC, …

People start using it

Define a bytecode format and write bytecode interpreter

People complain about performance

Write a JIT compiler, improve the garbage collector

Performance is still bad

Prototype a new language in Java

Parser and language work to build syntax tree (AST)
Execute using AST interpreter

People start using it

And it is already fast

Current situation How it should be

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Truffle System Structure

Low-footprint VM, also
suitable for embedding

Common API separates
language implementation
and optimization system

Language agnostic
dynamic compiler

AST Interpreter for
every language

Integrate with Java
applications

Substrate VM

Graal

JavaScript Ruby Python R

Graal VM

…

Truffle

84

Your language
should be here!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Truffle Approach

85

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Deoptimization
to AST Interpreter

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Performance: JavaScript

1 1 1 1 1 1 1 1 1

0.
7 0.
8

1.
0

0.
7

1.
1

1.
6

0.
6

1.
2

0.
9

0.
9

1.
3

0.
6

0.
5

0.
9

1.
6

0.
4

1.
4

0.
7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
V8
SpiderMonkey
Truffle

86

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Custom Graal Compilation in Truffle
• Custom method inlining

– Unconditionally inline all Truffle node execution methods
– See class PartialEvaluator, TruffleCacheImpl

• Custom escape analysis
– Enforce that Truffle frames are escape analyzed
– See class NewFrameNode

• Custom compiler intrinsics
– See class CompilerDirectivesSubstitutions, CompilerAssertsSubstitutions

• Custom nodes for arithmetic operations with overflow check
– See class IntegerAddExactNode, IntegerSubExactNode, IntegerMulExactNode

• Custom invalidation of compiled code when a Truffle Assumption is invalidated
– See class OptimizedAssumption, OptimizedAssumptionSubstitutions

87

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Example: Visualize Truffle Compilation

function loop(n) {
 i = 0;
 while (i < n) {
 i = i + 1;
 }
 return i;
}

SL source code:

Machine code for loop:
 ...
 movq rcx, 0x0
 jmp L2:
L1: safepoint
 mov rsi, rcx
 addq rsi, 0x1
 jo L3:
 mov rcx, rsi
L2: cmp rax, rcx
 jnle L1:
 ...
L3: call deoptimize

Run this example:

-G:-TruffleBackgroundCompilation forces compilation in the main thread

-G:Dump= dumps compiled functions to IGV

$./mx.sh igv &
$./mx.sh sl -G:Dump= -G:-TruffleBackgroundCompilation graal/com.oracle.truffle.sl.test/tests/LoopPrint.sl

88

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Graal Graph of Simple Language Method

89

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Summary

90

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Your Usage of Graal?

http://openjdk.java.net/projects/graal/

More Installation Instructions:
https://wiki.openjdk.java.net/display/Graal/Instructions

Graal License: GPLv2

graal-dev@openjdk.java.net

$ hg clone http://hg.openjdk.java.net/graal/graal
$ cd graal
$./mx build
$./mx ideinit
$./mx vm YourApplication

91

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 92

	Slide Number 1
	Graal
	Slide Number 3
	Tutorial Outline
	What is Graal?
	Key Features of Graal
	Getting Started
	Mixed-Mode Execution
	Compiler-VM Separation
	Default Compilation Pipeline
	Graal Benchmark Results�
	Acknowledgements
	Graph-Based Intermediate Representation
	Basic Properties
	IR Example: Defining Nodes
	IR Example: Ideal Graph Visualizer
	IR Example: Control Flow
	IR Example: Floating Nodes
	IR Example: Loops
	FrameState
	IR Example: Frame States
	Important Optimizations
	A Simple Optimization Phase
	Type System (Stamps)
	Speculative Optimizations
	Motivating Example for Speculative Optimizations
	Deoptimization
	Deoptimization
	Deoptimization
	Deoptimization
	Example: Speculative Optimization
	After Parsing without Speculation
	After Parsing with Speculation
	After Converting Deoptimize to Fixed Guard
	Frame states after Parsing
	After Lowering: Guard is Floating
	After Replacing Guard with If-Deoptimize
	Frame States are Still Unchanged
	After FrameStateAssignmentPhase
	Final Graph After Optimizations
	Frame States: Two Stages of Compilation
	Optimizations on Floating Guards
	Graal API
	Graal API Interfaces
	Dynamic Class Loading
	Important Provider Interfaces
	Example: Print Bytecodes of a Method
	Snippets
	The Lowering Problem
	Snippet Lifecycle
	Snippet Example: instanceOf with Profiling Information
	Snippet Example: Specialization for One Type
	Node Intrinsics
	Snippet Instantiation
	Example in IGV
	Method Before Lowering
	Snippet After Parsing
	Snippet After Preparation
	Snippet After Specialization
	Method After Lowering
	Compiler Intrinsics
	Compiler Intrinsics
	Example: Intrinsification of Math.sin()
	After Parsing
	Method Substitution
	After Inlining the Substituted Method
	LIR Instruction
	LIR Before Register Allocation
	Static Analysis using Graal
	Graal as a Static Analysis Framework
	Example: A Simple Static Analysis
	Example Type Flow Graph
	Example Type Flow Graph
	Building the Graal Graph
	Building the Type Flow Graph
	Linking Method Invocations
	Substrate VM
	Custom Compilations with Graal
	Custom Compilations with Graal
	Example: Custom Compilation
	Example: Custom Compilation
	Truffle
	“Write Your Own Language”
	Truffle System Structure
	Truffle Approach
	Performance: JavaScript
	Custom Graal Compilation in Truffle
	Example: Visualize Truffle Compilation
	Graal Graph of Simple Language Method
	Summary
	Your Usage of Graal?
	Slide Number 92
	Slide Number 93

