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Safe Harbor Statement 
The following is intended to provide some insight into a line of research in Oracle Labs. It 
is intended for information purposes only, and may not be incorporated into any contract.  
It is not a commitment to deliver any material, code, or functionality, and should not be 
relied upon in making purchasing decisions. The development, release, and timing of any 
features or functionality described in connection with any Oracle product or service 
remains at the sole discretion of Oracle.  Any views expressed in this presentation are my 
own and do not necessarily reflect the views of Oracle. 
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Tutorial Outline 
• Key distinguishing features of Graal, a high-performance dynamic compiler for Java written in Java 
• Introduction to the Graal intermediate representation: structure, instructions, and optimization phases 
• Speculative optimizations: first-class support for optimistic optimizations and deoptimization 
• Graal API: separation of the compiler from the VM 
• Snippets: expressing high-level semantics in low-level Java code 
• Compiler intrinsics: use all your hardware instructions with Graal 
• Using Graal for static analysis 
• Custom compilations with Graal: integration of the compiler with an application or library 
• Graal as a compiler for dynamic programming languages in the Truffle framework 
 
   

 

4 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.  | 

What is Graal? 
• A high-performance optimizing JIT compiler for the Java HotSpot VM 

– Written in Java and benefitting from Java’s annotation and metaprogramming 
 

• A modular platform to experiment with new compiler optimizations 
 

• A customizable and targetable compiler that you can invoke from Java 
– Compile what you want, the way you want 

 

• A platform for speculative optimization of managed languages 
– Especially dynamic programming languages benefit from speculation 

 

• A platform for static analysis of Java bytecodes 
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Key Features of Graal 
• Designed for speculative optimizations and deoptimization 

– Metadata for deoptimization is propagated through all optimization phases 
 

• Designed for exact garbage collection 
– Read/write barriers, pointer maps for garbage collector 

 

• Aggressive high-level optimizations 
– Example: partial escape analysis 

 

• Modular architecture 
– Compiler-VM separation 

 

• Written in Java to lower the entry barrier 
– Graal compiling and optimizing itself is also a good optimization opportunity 
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Getting Started 

$ hg clone http://hg.openjdk.java.net/graal/graal 
$ cd graal 
$ ./mx.sh build 

Get and build the source code: 

$ ./mx.sh vm -version 

Run the Graal VM: 

$ ./mx.sh ideinit 

Generate Eclipse and NetBeans projects: 

Configuration "graal" for JIT compilations with Graal 
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$ ./mx.sh unittest 

Run the whitebox unit tests 

mx is our script to simplify building and execution 

Configuration "server" for unittest, static analysis, 
custom compilations from application 

Operating Systems: Windows, Linux, MacOS, Solaris 

Architectures: Intel 64-bit, Sparc (experimental) 

$ ./mx.sh –d unittest GraalTutorial#testStringHashCode 

Run a specific unit test in the Java debugger 

Use the predefined Eclipse launch configuration to 
connect to the Graal VM 
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Mixed-Mode Execution 
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Bytecode Interpreter Client Compiler Server Compiler Optimized Machine Code Aggressively Optimized Machine Code 

Deoptimization 

Default configuration of Java HotSpot VM in production: 

Graal VM in configuration "graal": Graal replaces the server compiler 

Bytecode Interpreter Client Compiler Graal Compiler Optimized Machine Code Aggressively Optimized Machine Code 

Deoptimization 

Bytecode Interpreter Client Compiler Server Compiler Optimized Machine Code Aggressively Optimized Machine Code 

Graal VM in configuration "server": Graal used only for custom compilations 

Custom Compiled Machine Code 

Graal Compiler 

Deoptimization 
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Compiler-VM Separation 
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Graal

Java Bytecode Parser

High-Level Optimizations

Low-Level Optimizations

Lowering

Code Generation

Bytecodes 
and Metadata

Snippets

Machine Code
and Metadata

IR with High-Level Nodes

IR with Low-Level Nodes

Java HotSpot VM

Snippet Definitions

Class Metadata

Code Cache
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Default Compilation Pipeline 
• Java bytecode parser 
• Front end: graph based intermediate representation (IR) in static single assignment (SSA) form 

– High Tier 
• Method inlining 
• Partial escape analysis 
• Lowering using snippets 

– Mid Tier 
• Memory optimizations 
• Lowering using snippets 

– Low Tier 
• Back end: register based low-level IR (LIR) 

– Register allocation 
– Peephole optimizations 

• Machine code generation 
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Source code reference: GraalCompiler.compile() 
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Graal Benchmark Results 
 

Higher is better, 
normalized to 
Client compiler. 
 
Results are not SPEC  
compliant, but follow the  
rules for research use. 
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Graph-Based Intermediate Representation 
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Basic Properties 
• Two interposed directed graphs 

– Control flow graph: Control flow edges point “downwards” in graph 
– Data flow graph: Data flow edges point “upwards” in graph 

 

• Floating nodes 
– Nodes that can be scheduled freely are not part of the control flow graph 
– Avoids unnecessary restrictions of compiler optimizations 

• Graph edges specified as annotated Java fields in node classes 
– Control flow edges: @Successor fields 
– Data flow edges: @Input fields 
– Reverse edges (i.e., predecessors, usages) automatically maintained by Graal 

 

• Always in Static Single Assignment (SSA) form 
• Only explicit and structured loops 

– Loop begin, end, and exit nodes 

• Graph visualization tool: “Ideal Graph Visualizer”, start using “./mx.sh igv” 
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IR Example: Defining Nodes 
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public abstract class BinaryNode ... { 
  @Input protected ValueNode x; 
  @Input protected ValueNode y; 
} 

public class IfNode ... { 
  @Successor BeginNode trueSuccessor; 
  @Successor BeginNode falseSuccessor; 
  @Input(InputType.Condition) LogicNode condition; 
  protected double trueSuccessorProbability; 
} 

@Input fields: data flow  

@Successor fields: control flow 

Fields without annotation: normal data properties 

public abstract class Node ... { 
  public NodeClassIterable inputs() { ... } 
  public NodeClassIterable successors() { ... } 
 
  public NodeIterable<Node> usages() { ... } 
  public Node predecessor() { ... } 
} 

Base class allows iteration of all inputs / successors 

Base class maintains reverse edges: usages / predecessor 

Design invariant: a node has at most one predecessor 
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IR Example: Ideal Graph Visualizer 
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$ ./mx.sh igv & 
$ ./mx.sh unittest -G:Dump= -G:MethodFilter=String.hashCode GraalTutorial#testStringHashCode 

Start the Graal VM with graph dumping enabled 

Test that just compiles String.hashCode() 

Graph optimization phases 

Filters to make graph 
more readable 

Properties for the 
selected node 

Colored and filtered graph: control flow in red, 
data flow in blue 
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IR Example: Control Flow 
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Fixed node form the control flow graph 

Fixed nodes: all nodes that have side effects and need to 
be ordered, e.g., for Java exception semantics 

Optimization phases can convert fixed to floating nodes 
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IR Example: Floating Nodes 
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Floating nodes have no control flow dependency 

Can be scheduled anywhere as long as data dependencies 
are fulfilled 

Constants, arithmetic functions, phi functions, … are 
floating nodes 
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IR Example: Loops 
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All loops are explicit and structured 

LoopBegin, LoopEnd, LoopExit nodes 

Simplifies optimization phases 
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FrameState 
• Speculative optimizations require deoptimization 

– Restore Java interpreter state at safepoints 
– Graal tracks the interpreter state throughout the whole compilation 

• FrameState nodes capture the state of Java local variables and Java expression stack 
• And: method + bytecode index 

 

• Method inlining produces nested frame states 
– FrameState of callee has @Input outerFrameState  
– Points to FrameState of caller 
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IR Example: Frame States 
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State at the beginning of the loop: 
Local 0: “this” 
Local 1: “h” 
Local 2: “val” 
Local 3: “i” 

public int hashCode() { 
  int h = hash; 
  if (h == 0 && value.length > 0) { 
    char val[] = value; 
    for (int i = 0; i < value.length; i++) { 
      h = 31 * h + val[i]; 
    } 
    hash = h; 
  } 
  return h; 
} 
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Important Optimizations 
• Constant folding, arithmetic optimizations, strength reduction, ... 

– CanonicalizerPhase 
– Nodes implement the interface Canonicalizeable 
– Executed often in the compilation pipeline 
– Incremental canonicalizer only looks at new / changed nodes to save time 

 

• Global Value Numbering 
– Automatically done based on node equality 
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A Simple Optimization Phase 
public class LockEliminationPhase extends Phase { 
 
  @Override 
  protected void run(StructuredGraph graph) { 
    for (MonitorExitNode node : graph.getNodes(MonitorExitNode.class)) { 
      FixedNode next = node.next(); 
      if (next instanceof MonitorEnterNode) { 
        MonitorEnterNode monitorEnterNode = (MonitorEnterNode) next; 
        if (monitorEnterNode.object() == node.object()) { 
          GraphUtil.removeFixedWithUnusedInputs(monitorEnterNode); 
          GraphUtil.removeFixedWithUnusedInputs(node); 
        } 
      } 
    } 
  } 
} 

Eliminate unnecessary release-reacquire of a monitor 
when no instructions are between 

Iterate all nodes of a certain class 

Modify the graph 
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Type System (Stamps) 
• Every node has a Stamp that describes the possible values of the node 

– The kind of the value (object, integer, float) 
– But with additional details if available 
– Stamps form a lattice with meet (= union) and join (= intersection) operations 

 

• ObjectStamp 
– Declared type: the node produces a value of this type, or any subclass 
– Exact type: the node produces a value of this type (exactly, not a subclass) 
– Value is never null (or always null) 

• IntegerStamp 
– Number of bits used 
– Minimum and maximum value 
– Bits that are always set, bits that are never set 

• FloatStamp 
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Speculative Optimizations 
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Motivating Example for Speculative Optimizations 
• Inlining of virtual methods 

– Most methods in Java are dynamically bound 
– Class Hierarchy Analysis 
– Inline when only one suitable method exists 

• Compilation of foo() when only A loaded 
– Method getX() is inlined 
– Same machine code as direct field access 
– No dynamic type check 

• Later loading of class B 
– Discard machine code of foo() 
– Recompile later without inlining 

• Deoptimization 
– Switch to interpreter in the middle of foo() 
– Reconstruct interpreter stack frames 
– Expensive, but rare situation 
– Most classes already loaded at first compile 

void foo() { 
  A a = create(); 
  a.getX(); 
} 

class A { 
  int x; 
 
  int getX() { 
    return x; 
  } 
} 

class B extends A { 
  int getX() {  
    return ... 
  } 
} 
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Expression Stack 

Local Variables 

Interpreter Information 

Dynamic Link, Return Address 

enter 
call create 
move [eax + 8] -> esi 
leave 
return 

Deoptimization 
main() 
Interpreter Frame 

Expression Stack 

Local Variables 

Interpreter Information 

Dynamic Link, Return Address 

Dynamic Link, Return Address 

Spill Slots 
foo() 
Compiled Frame 

create() 
Interpreter Frame 

Stack grows 
downwards 

Machine code for foo(): 
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Expression Stack 

Local Variables 

Interpreter Information 

Dynamic Link, Return Address 

Deoptimization 
main() 
Interpreter Frame 

Expression Stack 

Local Variables 

Interpreter Information 

Dynamic Link, Return Address 

Dynamic Link, Return Address 

Spill Slots 
foo() 
Compiled Frame 

create() 
Interpreter Frame 

Stack grows 
downwards 

Machine code for foo(): 

jump Interpreter 
call create 
call Deoptimization 
leave 
return 
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Deoptimization 
main() 
Interpreter Frame 

Expression Stack 

Local Variables 

Interpreter Information 

Dynamic Link, Return Address 

Dynamic Link, Return Address 

Spill Slots 
foo() 
Compiled Frame 

Stack grows 
downwards 

Machine code for foo(): 

jump Interpreter 
call create 
call Deoptimization 
leave 
return 
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foo() 
Interpreter Frame 
 

Expression Stack 

Local Variables 

Interpreter Information 

Dynamic Link, Return Address 

Deoptimization 
main() 
Interpreter Frame 

Expression Stack 

Local Variables 

Interpreter Information 

Dynamic Link, Return Address 

Stack grows 
downwards 

Machine code for foo(): 

jump Interpreter 
call create 
call Deoptimization 
leave 
return 
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Example: Speculative Optimization 
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int f1; 
int f2; 
 
void speculativeOptimization(boolean flag) { 
  f1 = 41; 
  if (flag) { 
    f2 = 42; 
    return; 
  } 
  f2 = 43; 
} 

Java source code: 

./mx.sh igv & 

./mx.sh unittest -G:Dump= -G:MethodFilter=GraalTutorial.speculativeOptimization GraalTutorial#testSpeculativeOptimization 

Command line to run example:  

Assumption: method speculativeOptimization is always 
called with parameter flag set to false 

The test case dumps two graphs: first with speculation, 
then without speculation 
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After Parsing without Speculation 
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Without speculative optimizations: graph covers the whole 
method 

int f1; 
int f2; 
 
void speculativeOptimization(boolean flag) { 
  f1 = 41; 
  if (flag) { 
    f2 = 42; 
    return; 
  } 
  f2 = 43; 
} 
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After Parsing with Speculation 
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Speculation Assumption: method test is always called 
with parameter flag set to false 

No need to compile the code inside the if block 

Bytecode parser creates the if block, but stops parsing 
and fills it with DeoptimizeNode 

Speculation is guided by profiling information collected by 
the VM before compilation 
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After Converting Deoptimize to Fixed Guard 
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ConvertDeoptimizeToGuardPhase replaces the if-
deoptimize with a single FixedGuardNode 
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Frame states after Parsing 
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State changing nodes have a FrameState 

Guard does not have a FrameState 
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After Lowering: Guard is Floating 
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First lowering replaces the FixedGuardNode with a floating 
GuardNode 

ValueAnchorNode ensures the floating guard is executed 
before the second write 

Guard can be scheduled within these constraints 

Dependency of floating guard on StartNode ensures guard 
is executed after the method start 
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After Replacing Guard with If-Deoptimize 
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GuardLoweringPhase replaces GuardNode with if-
deoptimize  

The if is inserted at the best (earliest) position – it is before 
the write to field f1 
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Frame States are Still Unchanged 
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State changing nodes have a FrameState 

Deoptimize does not have a FrameState 

Up to this optimization stage, nothing has changed 
regarding FrameState nodes 
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After FrameStateAssignmentPhase 
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State changing nodes do not have a FrameState 

Deoptimize does have a FrameState 

FrameStateAssignmentPhase assigns every 
DeoptimizeNode the FrameState of the preceding state 
changing node 
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Final Graph After Optimizations 
 

40 
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Frame States: Two Stages of Compilation 
First Stage: Guard Optimizations Second Stage: Side-effects Optimizations 

FrameState  is on ...  ... nodes with side effects ... nodes that deoptimize 

Nodes with side effects ... ... cannot be moved within the graph ... can be moved 

Nodes that deoptimize ...  ... can be moved within the graph ... cannot be moved 

New guards can be introduced anywhere 
at any time. Redundant guards can be 
eliminated. Most optimizations are 
performed in this stage. 

Nodes with side effects can be reordered 
or combined. 

StructuredGraph.guardsStage =  GuardsStage.FLOATING_GUARDS GuardsStage.AFTER_FSA 

Graph is in this stage ...  ... before GuardLoweringPhase ... after FrameStateAssignmentPhase 

41 

Implementation note: Between GuardLoweringPhase and FrameStateAssignmentPhase, the graph is in stage 
GuardsStage.FIXED_DEOPTS. This stage has no benefit for optimization, because it has the restrictions of both major stages. 
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Optimizations on Floating Guards 
• Redundant guards are eliminated 

– Automatically done by global value numbering 
– Example: multiple bounds checks on the same array 

 

• Guards are moved out of loops 
– Automatically done by scheduling 
– GuardLoweringPhase assigns every guard a dependency on the reverse postdominator of the original 

fixed location 
• The block whose execution guarantees that the original fixed location will be reached too 

– For guards in loops (but not within a if inside the loop), this is a block before the loop 
 

• Speculative optimizations can move guards further up 
– This needs a feedback cycle with the interpreter: if the guard actually triggers deoptimization, 

subsequent recompilation must not move the guard again 
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Graal API 

43 
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Graal API Interfaces 
• Interfaces for everything coming from a .class file 

– JavaType, JavaMethod, JavaField, ConstantPool, Signature, … 

• Provider interfaces 
– MetaAccessProvider, CodeCacheProvider, ConstantReflectionProvider, … 

• VM implements the interfaces, Graal uses the interfaces 
 

• CompilationResult is produced by Graal 
– Machine code in byte[] array  
– Pointer map information for garbage collection 
– Information about local variables for deoptimization 
– Information about speculations performed during compilation 

44 
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Dynamic Class Loading 
• From the Java specification: Classes are loaded and initialized as late as possible 

– Code that is never executed can reference a non-existing class, method, or field 
– Invoking a method does not make the whole method executed 
– Result: Even a frequently executed (= compiled) method can have parts that reference non-existing elements 
– The compiler must not trigger class loading or initialization, and must not throw linker errors 

 

• Graal API distinguishes between unresolved and resolved elements 
– Interfaces for unresolved elements: JavaType, JavaMethod, JavaField 

• Only basic information: name, field kind, method signature 
– Interfaces for resolved elements: ResolvedJavaType, ResolvedJavaMethod, ResolvedJavaField 

• All the information that Java reflection gives you, and more 
 

• Graal as a JIT compiler does not trigger class loading 
– Replace accesses to unresolved elements with deoptimization, let interpreter then do the loading and linking 

• Graal as a static analysis framework can trigger class loading 
 

45 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.  | 46 

Important Provider Interfaces 
public interface MetaAccessProvider { 
  ResolvedJavaType lookupJavaType(Class<?> clazz); 
  ResolvedJavaMethod lookupJavaMethod(Executable reflectionMethod); 
  ResolvedJavaField lookupJavaField(Field reflectionField); 
  ... 
} 

Convert Java reflection objects to Graal API 

public interface ConstantReflectionProvider { 
  Boolean constantEquals(Constant x, Constant y); 
  Integer readArrayLength(JavaConstant array); 
  ... 
} 

Look into constants – note that the VM can deny the 
request, maybe it does not even have the information 

It breaks the compiler-VM separation to get the raw object 
encapsulated in a Constant – so there is no method for it 

public interface CodeCacheProvider { 
  InstalledCode addMethod(ResolvedJavaMethod method, CompilationResult compResult,  
          SpeculationLog speculationLog, InstalledCode predefinedInstalledCode); 
  InstalledCode setDefaultMethod(ResolvedJavaMethod method, CompilationResult compResult); 
  TargetDescription getTarget(); 
  ... 
} 

Install compiled code into the VM 
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Example: Print Bytecodes of a Method 
/* Entry point object to the Graal API from the hosting VM. */ 
RuntimeProvider runtimeProvider = Graal.getRequiredCapability(RuntimeProvider.class); 
 
/* The default backend (architecture, VM configuration) that the hosting VM is running on. */ 
Backend backend = runtimeProvider.getHostBackend(); 
 
/* Access to all of the Graal API providers, as implemented by the hosting VM. */ 
Providers providers = backend.getProviders(); 
 
/* The provider that allows converting reflection objects to Graal API. */ 
MetaAccessProvider metaAccess = providers.getMetaAccess(); 
 
Method reflectionMethod = ... 
ResolvedJavaMethod method = metaAccess.lookupJavaMethod(reflectionMethod); 
 
/* ResolvedJavaMethod provides all information that you want about a method, for example, the bytecodes. */ 
byte[] bytecodes = method.getCode(); 
 
/* BytecodeDisassembler shows you how to iterate bytecodes, how to access type information, and more. */ 
System.out.println(new BytecodeDisassembler().disassemble(method)); 

./mx.sh unittest GraalTutorial#testPrintBytecodes 

Command line to run example:  
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Snippets 

48 
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The Lowering Problem 
• How do you express the low-level semantics of a high-level operation? 
• Manually building low-level IR graphs 

– Tedious and error prone 
• Manually generating machine code 

– Tedious and error prone 
– Probably too low level (no more compiler optimizations possible after lowering) 

 

• Solution: Snippets 
– Express the semantics of high-level Java operations in low-level Java code 

• Word type representing a machine word allows raw memory access 
– Simplistic view: replace a high-level node with an inlined method 
– To make it work in practice, a few more things are necessary 

49 
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Snippet Lifecycle 

Bytecodes Prepared
IR Graph Specialized

IR Graphs

Preparation Specialization Instantiation

Once Few Times Many Times

...
aload_0 
getfield
ifne 10          
aload_1       
arraylength
...  

Frequency:

Java Bytecode Parsing

Node Intrinsification
Exhaustive Method Inlining

Constant Folding, Canonicalization

Graph Duplication

Node Intrinsification
Constant Folding, Canonicalization

Constant Parameter Replacement
Graph Duplication
Graph Inlining in Target Method
Constant Folding, Canonicalization

Steps:

Target Method 
with High-level 

Node

Specialized
 IR Graph
of Snippet

Target Method 
with Low-level 

Nodes

+ =

...
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Snippet Example: instanceOf with Profiling Information 
@Snippet 
static Object instanceofWithProfile(Object object,  
      @ConstantParameter boolean nullSeen, 
      @VarargsParameter Word[] profiledHubs,  
      @VarargsParameter boolean[] hubIsPositive) { 
 
  if (probability(NotFrequent, object == null)) { 
    if (!nullSeen) { 
      deoptimize(OptimizedTypeCheckViolated); 
      throw shouldNotReachHere(); 
    } 
    isNullCounter.increment(); 
    return false; 
  } 
  Anchor afterNullCheck = anchor(); 
  Word objectHub = loadHub(object, afterNullCheck); 
 
  explodeLoop(); 
  for (int i = 0; i < profiledHubs.length; i++) { 
    if (profiledHubs[i].equal(objectHub)) { 
      profileHitCounter.increment(); 
      return hubIsPositive[i]; 
    } 
  } 
  deoptimize(OptimizedTypeCheckViolated); 
  throw shouldNotReachHere(); 
} 

Specialization for one type and never null: Constant folding during specialization 

Loop unrolling during specialization 

Loop unrolling during specialization 

Node intrinsic Node intrinsic Node intrinsic 

Debug / profiling code eliminated by constant folding and 
dead code elimination 
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Snippet Example: Specialization for One Type 
@Snippet 
static Object instanceofWithProfile(Object object,  
      @ConstantParameter boolean nullSeen, 
      @VarargsParameter Word[] profiledHubs,  
      @VarargsParameter boolean[] hubIsPositive) { 
 
  if (probability(NotFrequent, object == null)) { 
    if (!nullSeen) { 
      deoptimize(OptimizedTypeCheckViolated); 
      throw shouldNotReachHere(); 
    } 
    isNullCounter.increment(); 
    return false; 
  } 
  Anchor afterNullCheck = anchor(); 
  Word objectHub = loadHub(object, afterNullCheck); 
 
  explodeLoop(); 
  for (int i = 0; i < profiledHubs.length; i++) { 
    if (profiledHubs[i].equal(objectHub)) { 
      profileHitCounter.increment(); 
      return hubIsPositive[i]; 
    } 
  } 
  deoptimize(OptimizedTypeCheckViolated); 
  throw shouldNotReachHere(); 
} 

falsetrue

guard

falsetrue
If

Begin Begin

Deoptimize

Return

IsNull

LoadHub

P:object

P:profiledHubs-0

P:hubIsPositive-0

Start

If

==

Begin Begin

Deoptimize

IR Node

Control-flow Edge

Data-flow Edge
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Node Intrinsics 
class LoadHubNode extends FloatingGuardedNode { 
 
  @Input ValueNode object; 
 
  LoadHubNode(ValueNode object, ValueNode guard) { 
    super(guard); 
    this.object = object; 
  } 
} 
 
@NodeIntrinsic(LoadHubNode.class) 
static native Word loadHub(Object object, Object guard); 

class DeoptimizeNode extends ControlSinkNode { 
 
  final Reason reason; 
 
  DeoptimizeNode(Reason reason) { 
    this.object = object; 
  } 
} 
 
@NodeIntrinsic(DeoptimizeNode.class) 
static native void deoptimize( 
                       @ConstantNodeParameter Reason reason); 

Calling the node intrinsic reflectively instantiates the node 
using the matching constructor 

Constructor with non-Node parameter requires node 
intrinsic parameter to be a constant during snippet 
specialization 
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Snippet Instantiation 
SnippetInfo instanceofWithProfile = snippet(InstanceOfSnippets.class, "instanceofWithProfile"); 
 
void lower(InstanceOfNode node) { 
  ValueNode object = node.getObject(); 
  JavaTypeProfile profile = node.getProfile(); 
 
  if (profile.totalProbability() > threshold) { 
    int numTypes = profile.getNumTypes(); 
    Word[] profiledHubs = new Word[numTypes]; 
    boolean hubIsPositive = new boolean[numTypes]; 
    for (int i = 0; i < numTypes; i++) { 
      profiledHubs[i] = profile.getType(i).getHub(); 
      hubIsPositive[i] = profile.isPositive(i); 
    } 
 
    Args args = new Args(instanceofWithProfile); 
    args.add(object); 
    args.addConst(profile.getNullSeen()); 
    args.addVarargs(profiledHubs); 
    args.addVarargs(hubIsPositive); 
 
    SnippetTemplate s = template(args); 
    s.instantiate(args, node); 
 
  } else { 
    // Use a different snippet. 
  } 
} 

Node argument: formal parameter of snippet is replaced 
with this node 

Constant argument for snippet specialization 

Snippet preparation and specialization 

Snippet instantiation 
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Example in IGV 
• The previous slides are slightly simplified 

– In reality the snippet graph is a bit more complex 
– But the end result is the same 
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static class A { } 
static class B extends A { } 
 
static int instanceOfUsage(Object obj) { 
  if (obj instanceof A) { 
    return 42; 
  } else { 
    return 0; 
  } 
} 

Java source code: 

./mx.sh igv & 

./mx.sh unittest -G:Dump= -G:MethodFilter=GraalTutorial.instanceOfUsage GraalTutorial#testInstanceOfUsage 

Command line to run example:  

Assumption: method instanceOfUsage is always called 
with parameter obj having class A 

The snippets for lowering of instanceOf are in class 
InstanceOfSnippets 
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Method Before Lowering 
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InstanceOfNode has profiling information: only type A seen 
in interpreter 
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Snippet After Parsing 
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IGV shows a nested graph for snippet preparation and 
specialization 

Snippet graph after bytecode parsing is big, because no 
optimizations have been performed yet 

Node intrinsics are still method calls 
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Snippet After Preparation 
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Calls to node intrinsics are replaced with actual nodes 

Constant folding and dead code elimination removed 
debugging code and counters 
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Snippet After Specialization 
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Constant snippet parameter is constant folded 

Loop is unrolled for length 1 

This much smaller graph is cached for future instantiations 
of the snippet 
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Method After Lowering 
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InstanceOfNode has been replaced with snippet graph 
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Compiler Intrinsics 

61 
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Compiler Intrinsics 
• Called “method substitution” in Graal 

– A lot mechanism and infrastructure shared with snippets 
 

• Use cases  
– Use a special hardware instruction instead of calling a Java method 
– Replace a runtime call into the VM with low-level Java code 

 

• Implementation steps 
– Define a node for the intrinsic functionality 
– Define a method substitution for the Java method that should be intrinsified 

• Use a node intrinsic to create your node 
– Define a LIR instruction for your functionality 
– Generate this LIR instruction in the LIRLowerable.generate() method of your node 
– Generate machine code in your LIRInstruction.emitCode() method 

62 
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Example: Intrinsification of Math.sin() 
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static double intrinsicUsage(double val) { 
  return Math.sin(val); 
} 

Java source code: 

./mx.sh igv & 

./mx.sh c1visualizer & 

./mx.sh unittest -G:Dump= -G:MethodFilter=GraalTutorial.intrinsicUsage GraalTutorial#testIntrinsicUsage 

Command line to run example:  

Java implementation of Math.sin() calls native code via JNI 

C1Visualizer shows the LIR and generated machine code 

x86 provides an FPU instruction: fsin 

Load the generated .cfg file with C1Visualzier 
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After Parsing 
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Regular method call to Math.sin() 
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@ClassSubstitution(value = java.lang.Math.class) 
public class MathSubstitutionsX86 { 
 
  @MethodSubstitution(guard = UnsafeSubstitutions.GetAndSetGuard.class) 
  public static double sin(double x) { 
    if (abs(x) < PI_4) { 
      return MathIntrinsicNode.compute(x, Operation.SIN); 
    } else { 
      return callDouble(ARITHMETIC_SIN, x); 
    } 
  } 
 
  public static final ForeignCallDescriptor ARITHMETIC_SIN = new ForeignCallDescriptor("arithmeticSin", double.class, double.class); 
} 
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Method Substitution 
public class MathIntrinsicNode extends FloatingNode implements ArithmeticLIRLowerable { 
  public enum Operation {LOG, LOG10, SIN, COS, TAN } 
 
  @Input protected ValueNode value; 
  protected final Operation operation; 
 
  public MathIntrinsicNode(ValueNode value, Operation op) { ... } 
  @NodeIntrinsic 
  public static native double compute(double value, @ConstantNodeParameter Operation op); 
 
  public void generate(NodeMappableLIRBuilder builder, ArithmeticLIRGenerator gen) { ... } 
} 

Class that is substituted 

Node with node intrinsic shared several Math methods 

The x86 instruction fsin can only be used for a small input 
values 

Runtime call into the VM used for all other values 

LIR Generation 
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After Inlining the Substituted Method 
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MathIntrinsicNode, AbsNode, and ForeignCallNode are all 
created by node intrinsics 

Graph remains unchanged throughout all further 
optimization phases 
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LIR Instruction 
public class AMD64MathIntrinsicOp extends AMD64LIRInstruction { 
  public enum IntrinsicOpcode  { SIN, COS, TAN, LOG, LOG10 } 
 
  @Opcode private final IntrinsicOpcode opcode; 
  @Def protected Value result; 
  @Use protected Value input; 
 
  public AMD64MathIntrinsicOp(IntrinsicOpcode opcode, Value result, Value input) { 
    this.opcode = opcode; 
    this.result = result; 
    this.input = input; 
  } 
 
  @Override 
  public void emitCode(CompilationResultBuilder crb, AMD64MacroAssembler masm) { 
    switch (opcode) { 
      case LOG:   masm.flog(asDoubleReg(result), asDoubleReg(input), false); break; 
      case LOG10: masm.flog(asDoubleReg(result), asDoubleReg(input), true); break; 
      case SIN:   masm.fsin(asDoubleReg(result), asDoubleReg(input)); break; 
      case COS:   masm.fcos(asDoubleReg(result), asDoubleReg(input)); break; 
      case TAN:   masm.ftan(asDoubleReg(result), asDoubleReg(input)); break; 
      default:    throw GraalInternalError.shouldNotReachHere(); 
    } 
  } 
} 

LIR uses annotation to specify input, output, or temporary 
registers for an instruction 

Finally the call to the assembler to emit the bits 
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LIR Before Register Allocation 
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The SIN instruction we are looking for 

Runtime call into the VM (without JNI overhead) 
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Static Analysis using Graal 
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Graal as a Static Analysis Framework 
• Graal and the hosting Java VM provide 

– Class loading (parse the class file) 
– Access the bytecodes of a method 
– Access to the Java type hierarchy, type checks 
– Build a high-level IR graph in SSA form 
– Linking / method resolution of method calls 

 

• Static analysis and compilation use same intermediate representation 
– Simplifies applying the static analysis results for optimizations 

70 
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Example: A Simple Static Analysis 
• Implemented just for this tutorial, not complete enough for production use 
• Goals 

– Identify all methods reachable from a root method 
– Identify the types assigned to each field 
– Identify all instantiated types 

• Fixed point iteration of type flows 
– Types are propagated from sources (allocations) to usages 

• Context insensitive 
– One set of types for each field 
– One set of types for each method parameter / method return 
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bar 

Example Type Flow Graph 
Object f; 
 
void foo() { 
  allocate(); 
  bar(); 
} 
 
Object allocate() { 
  f = new Point() 
} 
 
int bar() { 
  return f.hashCode(); 
} 

putField f 

new Point 

getField f 

obj vcall hashCode 

this 

allocate 

Point.hashCode 

[Point] 

[Point] 

[Point] 

f 

[Point] 

[Point] 

Analysis is context insensitive:  
One type state per field 
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bar 

Example Type Flow Graph 
Object f; 
 
void foo() { 
  allocate(); 
  bar(); 
} 
 
Object allocate() { 
  f = new Point() 
} 
 
int bar() { 
  return f.hashCode(); 
} 

putField f 

new Point 

getField f 

obj vcall hashCode 

this 

allocate 

Point.hashCode 

[Point] 

[Point] 

[Point, String] 

f 

[String] 

[Point, String] 

[Point, String] 

this 

String.hashCode 

Analysis is context insensitive:  
One type state per field 

f = "abc"; 
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Building the Graal Graph 
StructuredGraph graph = new StructuredGraph(method); 
 
try (Scope scope = Debug.scope("graph building", graph)) { 
 
  GraphBuilderConfiguration config= GraphBuilderConfiguration.getEagerDefault(); 
 
 
  config = config.withOmitAllExceptionEdges(true); 
 
  OptimisticOptimizations optOpts = OptimisticOptimizations.NONE; 
 
 
  GraphBuilderPhase.Instance graphBuilder = new GraphBuilderPhase.Instance(metaAccess, config, optOpts); 
  graphBuilder.apply(graph); 
 
} catch (Throwable ex) { 
  Debug.handle(ex); 
} 
 
TypeFlowBuilder typeFlowBuilder = new TypeFlowBuilder(graph); 
typeFlowBuilder.apply(); 

Support for graph dumping to IGV 

For simplicity we ignore exception handlers 

We want all types to be resolved, i.e., classes loaded 

Disable speculation and optimistic optimizations 

Parse bytecodes 

Convert Graal graph to our type flow graph 

Code from MethodState.process() 
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Building the Type Flow Graph 
class TypeFlowBuilder extends StatelessPostOrderNodeIterator { 
 
  private final NodeMap<TypeFlow> typeFlows; 
 
  public void apply() { 
    for (Node n : graph.getNodes()) { 
      if (n instanceof ParameterNode) { 
        ParameterNode node = (ParameterNode) n; 
        registerFlow(node, methodState.formalParameters[(node.index())]); 
      } 
    } 
    super.apply(); 
  } 
 
  protected void node(FixedNode n) { 
    if (n instanceof NewInstanceNode) { 
      NewInstanceNode node = (NewInstanceNode) n; 
      TypeFlow flow = new TypeFlow(); 
      flow.addTypes(Collections.singleton(type)); 
      registerFlow(node, flow); 
      flow.addUse(results.getAllInstantiatedTypes()); 
 
    } else if (n instanceof LoadFieldNode) { 
      LoadFieldNode node = (LoadFieldNode) n; 
      registerFlow(node, results.lookupField(node.field())); 

Graal class to store additional temporary data for nodes 

Iterate all graph nodes, not ordered 

Register the flow for a node in the typeFlows map 

Called for all fixed graph nodes in reverse postorder 

Type flow for an allocation: just the allocated type 

Graal class for iterating fixed nodes in reverse postorder 

Type flow for a field load: the types assigned to the field 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.  | 76 

Linking Method Invocations 
if (callTarget.invokeKind().isDirect()) { 
  /* Static and special calls: link the statically known callee method. */ 
  linkCallee(callTarget.targetMethod()); 
 
} else { 
  /* Virtual and interface call: Iterate all receiver types. */ 
  for (ResolvedJavaType type : getTypes()) { 
    /* 
     * Resolve the method call for one exact receiver type. The method linking 
     * semantics of Java are complicated, but fortunatley we can use the linker of 
     * the hosting Java VM. The Graal API exposes this functionality. 
     */ 
    ResolvedJavaMethod method = type.resolveConcreteMethod(callTarget.targetMethod(),  
                                    callTarget.invoke().getContextType()); 
    linkCallee(method); 
  } 
} 

Code from InvokeTypeFlow.process() 

New receiver types found by the static analysis are added 
to this set – this method is then executed again 
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Substrate VM 
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Static Analysis and Ahead-of-Time Compilation using Graal 
 

Ahead-of-Time  
Compilation 

Static Analysis 

Substrate VM 

Java Application 

JDK 

Reachable methods,  
fields, and classes 

Machine Code 

Initial Heap 

All Java classes from  
application,  JDK,  
and Substrate VM 

Application running  
without  dependency on JDK  
and without Java class loading 

DWARF Info 

ELF / MachO Binary 
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Custom Compilations with Graal 
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Custom Compilations with Graal 
• Applications can call Graal like a library to perform custom compilations 

– With application-specific optimization phases 
– With application-specific compiler intrinsics 
– Reusing all standard Graal optimization phases 
– Reusing lowerings provided by the hosting VM 

 

• Example use cases 
– Perform partial evaluation 

• Staged execution 
• Specialize for a fixed number of loop iterations 

– Custom method inlining 
– Use special hardware instructions 
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Example: Custom Compilation 
public class InvokeGraal { 
  protected final Backend backend; 
  protected final Providers providers; 
  protected final MetaAccessProvider metaAccess; 
  protected final CodeCacheProvider codeCache; 
  protected final TargetDescription target; 
 
  public InvokeGraal() { 
    /* Ask the hosting Java VM for the entry point object to the Graal API. */ 
    RuntimeProvider runtimeProvider = Graal.getRequiredCapability(RuntimeProvider.class); 
    /* The default backend (architecture, VM configuration) that the hosting VM is running on. */ 
    backend = runtimeProvider.getHostBackend(); 
    /* Access to all of the Graal API providers, as implemented by the hosting VM. */ 
    providers = backend.getProviders(); 
    /* Some frequently used providers and configuration objects. */ 
    metaAccess = providers.getMetaAccess(); 
    codeCache = providers.getCodeCache(); 
    target = codeCache.getTarget(); 
  } 
 
  protected InstalledCode compileAndInstallMethod(ResolvedJavaMethod method) ... 

$ ./mx.sh igv & 
$ ./mx.sh unittest -G:Dump= -G:MethodFilter=String.hashCode GraalTutorial#testStringHashCode 

Custom compilation of String.hashCode() 

See next slide 
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Example: Custom Compilation 
ResolvedJavaMethod method = ... 
StructuredGraph graph = new StructuredGraph(method); 
/* The phases used to build the graph. Usually this is just the GraphBuilderPhase. If 
 * the graph already contains nodes, it is ignored. */ 
PhaseSuite<HighTierContext> graphBuilderSuite = backend.getSuites().getDefaultGraphBuilderSuite(); 
/* The optimization phases that are applied to the graph. This is the main configuration 
 * point for Graal. Add or remove phases to customize your compilation. */ 
Suites suites = backend.getSuites().createSuites(); 
/* The calling convention for the machine code. You should have a very good reason 
 * before you switch to a different calling convention than the one that the VM provides by default. */ 
CallingConvention callingConvention = CodeUtil.getCallingConvention(codeCache, Type.JavaCallee, method, false); 
/* We want Graal to perform all speculative optimisitic optimizations, using the 
 * profiling information that comes with the method (collected by the interpreter) for speculation. */ 
OptimisticOptimizations optimisticOpts = OptimisticOptimizations.ALL; 
ProfilingInfo profilingInfo = method.getProfilingInfo(); 
/* The default class and configuration for compilation results. */ 
CompilationResult compilationResult = new CompilationResult(); 
CompilationResultBuilderFactory factory = CompilationResultBuilderFactory.Default; 
 
/* Invoke the whole Graal compilation pipeline. */ 
GraalCompiler.compileGraph(graph, callingConvention, method, providers, backend, target, null, graphBuilderSuite, 
                           optimisticOpts, profilingInfo, null, suites, compilationResult, factory); 
/* Install the compilation result into the VM, i.e., copy the byte[] array that contains 
 * the machine code into an actual executable memory location. */ 
InstalledCode installedCode = codeCache.addMethod(method, compilationResult, null, null); 
 
/* Invoke the installed code with your arguments. */ 
installedCode.executeVarargs([...]); 

Add your custom optimization phases to the suites 

You can manually construct Graal IR and compile it 
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Truffle 
A Language Implementation Framework that uses Graal for Custom Compilation 
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“Write Your Own Language” 

83 

Prototype a new language 

Parser and language work to build syntax tree (AST),  
AST Interpreter 

Write a “real” VM 

In C/C++, still using AST interpreter, spend a lot of time  
implementing runtime system, GC, … 

People start using it 

Define a bytecode format and write bytecode interpreter 

People complain about performance 

Write a JIT compiler, improve the garbage collector 

Performance is still bad 

Prototype a new language in Java 

Parser and language work to build syntax tree (AST) 
Execute using AST interpreter 

People start using it 

And it is already fast 

Current situation How it should be 
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Truffle System Structure 

Low-footprint VM, also 
suitable for embedding 

Common API separates 
language implementation 
and optimization system 

Language agnostic 
dynamic compiler 

AST Interpreter for 
every language 

Integrate with Java 
applications 

Substrate VM 

Graal 

JavaScript Ruby Python R 

Graal VM 

… 

Truffle 
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Your language 
should be here! 
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Truffle Approach 
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U

U U

U

U I

I I

G
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I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Deoptimization
to AST Interpreter
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Performance: JavaScript 
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Custom Graal Compilation in Truffle 
• Custom method inlining 

– Unconditionally inline all Truffle node execution methods 
– See class PartialEvaluator, TruffleCacheImpl 

• Custom escape analysis 
– Enforce that Truffle frames are escape analyzed 
– See class NewFrameNode 

• Custom compiler intrinsics 
– See class CompilerDirectivesSubstitutions, CompilerAssertsSubstitutions 

• Custom nodes for arithmetic operations with overflow check 
– See class IntegerAddExactNode, IntegerSubExactNode, IntegerMulExactNode 

• Custom invalidation of compiled code when a Truffle Assumption is invalidated 
– See class OptimizedAssumption, OptimizedAssumptionSubstitutions 
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Example: Visualize Truffle Compilation 

function loop(n) { 
  i = 0; 
  while (i < n) {   
    i = i + 1;   
  } 
  return i; 
} 

SL source code: 

Machine code for loop: 
     ... 
     movq      rcx, 0x0 
     jmp       L2:  
L1:  safepoint 
     mov       rsi, rcx 
     addq      rsi, 0x1 
     jo        L3:  
     mov       rcx, rsi 
L2:  cmp       rax, rcx 
     jnle      L1:  
     ... 
L3:  call      deoptimize 

Run this example: 

-G:-TruffleBackgroundCompilation forces compilation in the main thread 

-G:Dump= dumps compiled functions to IGV 

$ ./mx.sh igv & 
$ ./mx.sh sl -G:Dump= -G:-TruffleBackgroundCompilation graal/com.oracle.truffle.sl.test/tests/LoopPrint.sl 
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Graal Graph of Simple Language Method 
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Summary 
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Your Usage of Graal? 

http://openjdk.java.net/projects/graal/ 

More Installation Instructions: 
https://wiki.openjdk.java.net/display/Graal/Instructions 
 
Graal License: GPLv2 

graal-dev@openjdk.java.net 

$ hg clone http://hg.openjdk.java.net/graal/graal 
$ cd graal 
$ ./mx build 
$ ./mx ideinit 
$ ./mx vm YourApplication 
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