
Truffle: A Self-Optimizing Runtime System

Christian Wimmer Thomas Würthinger

Oracle Labs

christian.wimmer@oracle.com thomas.wuerthinger@oracle.com

Abstract
We present Truffle, a novel framework for implementing

managed languages in JavaTM. The language implementer

writes an AST interpreter, which is integrated in our frame-

work that allows tree rewriting during AST interpretation.

Tree rewrites incorporate type feedback and other profiling

information into the tree, thus specializing the tree and aug-

menting it with run-time information. When the tree reaches

a stable state, partial evaluation compiles the tree into opti-

mized machine code. The partial evaluation is done by Graal,

the just-in-time compiler of our Java VM (a variation of the

Java HotSpot VM). To show that Truffle supports a variety of

programming language paradigms, we present prototype im-

plementations of JavaScript (a dynamically typed program-

ming language) and J (an array programming language).

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Run-time environments, Opti-

mization

General Terms Algorithms, Languages, Performance

Keywords Java, JavaScript, J, Truffle, Graal, dynamic lan-

guages, virtual machine, language implementation

1. Introduction
An abstract syntax tree (AST) interpreter is a simple and

natural way to implement a programming language. How-

ever, it is usually also considered the slowest approach be-

cause of the high overhead of virtual method dispatch. Lan-

guage implementers therefore define bytecodes to speed up

interpretation, followed by a just-in-time compiler that is

needed to reach excellent peak performance. In addition, a

high-performance garbage collector is necessary for auto-

matic memory management, together with a runtime system

to form a complete virtual machine (VM) The algorithms for

all these components are well known. However, VM code is

Copyright is held by the author/owner(s).

SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

rarely reused when implementing a VM for a new language.

This makes the process of developing new high-performance

languages expensive and tedious.

Truffle is a novel approach to implement AST interpreters

in which the syntax tree is modified during interpretation to

incorporate type feedback [5]. This tree rewriting is a gen-

eral and powerful mechanism to optimize many constructs

common in dynamic programming languages. Our system is

implemented in Java and uses the static typing and primitive

data types of Java elegantly to avoid a boxed representation

of primitive values in dynamic programming languages.

The just-in-time (JIT) compiler of our Java VM, named

Graal [3], is extensible and accessible from the AST inter-

preter. The Truffle compilation system uses Graal on top

of the Java HotSpot VM to create optimized machine code

snippets for parts of a Truffle AST. The main idea is to

exploit that the AST changes rarely after it has reached a

stable state. We use partial evaluation and assume that the

current AST node structure remains constant. We inline the

execute methods of all AST nodes into one big compila-

tion unit. This compilation unit is then optimized by Graal. If

there is a control path that would change the Truffle AST, we

remove it from the compiled code and instead replace it with

a runtime call that triggers deoptimization [2], i.e., the op-

timized machine code is discarded and execution continues

in the AST interpreter. This way, we are able to create opti-

mized machine code for a Truffle sub-tree that only contains

the fast path for every node. This results in an executable ver-

sion of the sub-tree that is valid as long as no AST rewriting

needs to be performed. Such rewriting should be relatively

rare as an AST will only be scheduled for optimization when

profiling indicates that it is stable.

The source code of our system is available as open source

from [3].

2. Related Work
The system most closely related to Truffle is PyPy [4]. Truf-

fle shares with PyPy the main mission: automatically de-

riving an efficient implementation of a language by using

an interpreter of that language written in a statically typed

language. The difference between PyPy and Truffle is that

PyPy uses a trace-based JIT compiler [1], while Truffle uses

a traditional method-based JIT compiler. Because of the dy-

13



namic AST replacements in Truffle, we can leverage the best

of a trace compiler, i.e., only compiling the specialized fast

paths, while at the same time avoiding many of the problems

of trace compilers, e.g., handling or recursive method calls,

complications from trace tree merging to avoid code explo-

sion, or trace recording overhead.

3. Demonstration Outline
• Motivation for a modular language framework and re-use

of VM components.

• System architecture: Truffle runs on the Graal VM, a

modified version of the Java HotSpot VM with the Graal

JIT compiler. We present the basic architecture of Graal.

• Overview of Truffle: core classes that form the AST and

the framework for AST rewriting.

• AST interpreter cookbook: implementation of an AST

interpreter for a simple language. We will implement a

language and integrate it with the Truffle framework to

get a high-performance implementation of this language.

• Overview of the existing language implementations that

are under development: JavaScript (a dynamically typed

programming language) and J (an array programming

language).

4. Presenters
Christian Wimmer is a researcher at Oracle Labs, work-

ing on the Maxine VM, the Graal compiler, the Truffle dy-

namic language infrastructure, as well as on other projects

that involve dynamic compilation and optimizations. His re-

search interests span from compilers, virtual machines, and

secure systems to component-based software architectures.

He received a Dr. techn. degree in Computer Science (ad-

visor: Prof. Hanspeter Mössenböck) and a Dipl.-Ing. degree

in Computer Science, both from the Johannes Kepler Uni-

versity Linz, Austria. Before the time at Oracle, he was a

postdoctoral researcher at the Department of Computer Sci-

ence of the University of California, Irvine, working with

Prof. Michael Franz.

Thomas Würthinger is a researcher at Oracle Labs in

Austria. He works on the Graal compiler, the Truffle dy-

namic language infrastructure, and other projects in the area

of virtual machines. His research interests include com-

pilers, virtual machines, and graph visualization. He re-

ceived a Dr. techn. degree in Computer Science (advisor:

Prof. Hanspeter Mössenböck) and a Dipl.-Ing. degree in

Computer Science, both from the Johannes Kepler Univer-

sity Linz, Austria.

Acknowledgments
Truffle and Graal would not be possible without the efforts

of our academic collaborators, especially the Institute for

System Software at the Johannes Kepler University Linz.
We would also like to thank all members of the Virtual

Machine Research Group at Oracle Labs for their support

and contributions.

Oracle and Java are registered trademarks of Oracle

and/or its affiliates. Other names may be trademarks of their

respective owners.

References
[1] C. F. Bolz, A. Cuni, M. Fijałkowski, and A. Rigo. Tracing the

meta-level: PyPy’s tracing JIT compiler. In Proceedings of the
Workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems, pages

18–25. ACM Press, 2009. doi: 10.1145/1565824.1565827.

[2] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized

code with dynamic deoptimization. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 32–43. ACM Press, 1992. doi: 10.1145/

143095.143114.

[3] Oracle. OpenJDK: Graal project, 2012. URL http://openjdk.

java.net/projects/graal/.

[4] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine

construction. In Companion to the ACM SIGPLAN Conference
on Object Oriented Programming Systems, Languages, and
Applications, pages 944–953. ACM Press, 2006. doi: 10.1145/

1176617.1176753.

[5] T. Würthinger, A. Wöss, L. Stadler, G. Duboscq, D. Simon, and

C. Wimmer. Self-optimizing AST interpreters. In Proceedings
of the Dynamic Languages Symposium. ACM Press, 2012.

14




